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Abstract

A numerical model for turbulent opposed-jet mixing flows is developed with a one-dimensional (1-D) formulation

with various turbulence models. Calculations with different combinations of turbulence and scalar models are con-

ducted. The performances of various models are evaluated by extensive comparisons with existing experimental data.

The numerical model is then used for studying the dependence of predicted scalar field on exit bulk velocity and

turbulence intensity. Model results in general agree well with trends observed experimentally. The importance of non-

zero velocity gradient at jet exit on the predicted results is illustrated through exploration runs. The distribution of

mechanical-to-scalar time scale ratio, CD, is deduced from results obtained with a Reynolds stress model. The value of

CD is found to deviate substantially from the commonly used value of 2, especially when the density variation is large.

� 2003 Elsevier Ltd. All rights reserved.

Keywords: Opposed-jet flow; Turbulent scalar mixing; ~jj–~��; Reynolds stress
1. Introduction

Due to its simplicity in geometry, the opposed-jet

flow configuration has been used extensively in the past

for studying laminar flames [1–3]. Recently, there has

been an increasing interest on turbulent combustion

with the same configuration. The turbulence is usually

generated by a perforated plate upstream of the jet exit.

By changing the location of the perforated plate or the

number/size of the holes, different levels of turbulence

can be achieved [4–6]. Hence the turbulence strain rate

can be adjusted independently of mean flow field. The

influences of the mean and the turbulent strain rates on

flame behaviors ranging from equilibrium to extinction

can be studied separately without major modifications
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to the test rig. From the perspective of theoretical

analysis, the advantages associated with the opposed-jet

flow configuration are significant. The similarity of

velocity near the centerline permits the transformation

of the axisymmetric (2-D) partial differential equations

to one-dimensional (1-D) ordinary differential equations

(ODEs), thus greatly reduces the demand on computer

resources. Recently, this 1-D formulation has been val-

idated numerically by Chou et al. [7].

In the past, there have been several numerical and

theoretical studies of turbulent opposed-jet flames [8–

17]. These studies involved both premixed and non-

premixed flames with various types of turbulence and

scalar models. In general, the predicted mean axial ve-

locity and mean mixing field were found in reasonable

agreement with data reported in the literature. However,

the predicted second moments were less satisfactory. For

instance, the standard ~jj–~�� model was found to yield

negative normal Reynolds stress components when

density change is large [8]. A modified ~jj–~�� model was

introduced by Bray et al. [8] to correct this and this
ed.
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Nomenclature

Cv, Cd1, Cd2, Cd3, Cd4 empirical constants for the

scalar dissipation rate equation

CD mechanical-to-scalar time scale ratio

Cff (¼ 0.22) empirical constant for the scalar

variance equatio

Cq the normalized turbulent kinetic energy,

Cq �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðfu00u00 2 þ 2 ev00v00 2Þ=3q

=u0
Cs empirical constants for the Reynolds stress

equations

Csf , Cf 1, Cf 2 empirical constants for the gu00f 00u00f 00 trans-

port equation

Dm mean molecular diffusion coefficient

f mixture fraction

G dU=dz
H mean radial pressure gradient

h the spacing between the jet exits

Lt characteristic turbulence length scale

Sb mean strain rate

p pressure

Ret turbulent Reynolds number

r radial coordinate

rq density ratio of the jet streams

U �qq~uu=2
u axial velocity

v radial velocity

w azimuthal velocity

z axial coordinate

z� normalized axial coordinate, z� � 2z=h� 1

Greek symbols

v scalar dissipation rate, ~vv � 2Dm
gof
oxj

of
oxj

of
oxj

of
oxj

� turbulent energy dissipation rate

j turbulent kinetic energy

m kinematic viscosity coefficient

mt turbulent kinematic viscosity

q mass density

rf , rj, r� empirical coefficients in turbulent trans-

port term

sf flow residence time

st large-eddy turnover time

suu, svv, sww, suv Reynolds stress components

nf reciprocal of mixing time scale

Superscripts

–– conventional time average

� density weighted average (Favre average)
00 fluctuation with respect to the Favre average

Subscripts

0 air (cold) stream

1 fuel (hot) stream
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modification was adopted later by Maury and Libby [12]

in modeling of an opposed-jet non-premixed flame. The

computed ~jj profile showed a sharp dip at the stagnation

plane in disagreement with data which in fact reaches its

peak value. The predicted scalar variance was found in

poor agreement with the data. Studies using Reynolds

stress models were performed by solving modeled

transport equations for both the scalar variance and the

scalar flux. The scalar dissipation rate was modeled by a

fixed mechanical-to-scalar time scale ratio [11,13,14,16].

These studies showed that Reynolds stress models im-

proved the predictions of mean velocities and turbulence

intensities in comparison with the ~jj–~�� model.

As various types of turbulence and scalar models

were used in modeling of different types of flames, it is

difficult to gauge the merits of different turbulence and

scalar models. In addition, models for the interactions

between turbulence and chemistry play a critical role in

the predictions. A systematic study of numerical models

for predictions of mixing field in opposed-jet flows is

reported here as the first step toward a comprehensive

study of turbulent combustion. This paper is organized

as follows. We first report detailed equations for the

opposed-jet flows under the one-dimensional formula-

tion. Turbulence closure is provided by the standard ~jj–~��
model [18] and two versions of second-order closure: one

proposed by Launder et al. (LRR) [19] and the other by

Speziale et al. (SSG) [20]. Next, two different scalar field

models are described including the gradient model and a

second-order closure with a modeled transport equation

for the scalar dissipation rate. The performances of

various turbulence and scalar models are assessed by

comparisons with existing experimental data. Through

an exploration run, the importance of assigning a non-

zero velocity gradient boundary condition at the jet exits

is illustrated. Using results obtained from a second-

order scalar model, we deduce the distribution of the

mechanical-to-scalar time scale ratio, CD. The validity of

commonly assumed constant value of CD for modeling

the scalar dissipation rate is examined. The main find-

ings are summarized in the conclusion section.
2. Opposed-jet turbulent jet flows

A schematic of an opposed-jet flow is sketched in Fig.

1. Two opposed, axisymmetric jets are directed toward

each other with a distance, h, which is of the order of jet

diameter in most experiments. Studies of mixing can be

carried out with fuel in one stream and oxidizer in the



Fig. 1. Schematic of opposed-jet flow configuration.
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other stream. Alternatively, air streams at different

temperatures can be used. A detailed description of the

opposed-jet flow experiments can be found in Ref. [4].

The mean strain rate of the opposed-jet flow is defined as

[21]

Sb ¼
u0
h

1

�
þ u1
u0

ffiffiffiffiffi
q1

q0

r �
: ð1Þ

For opposed jets with equal momentum, Eq. (1) reduces

to Sb ¼ 2u0=h, which is referred to as the stagnation-flow

velocity gradient [2,21].

2.1. Mathematical formulation

With the axisymmetric assumption, the Favre (den-

sity weighted) averaged continuity and momentum

equations for high-Reynolds number turbulent flows can

be written as

Mean continuity equation:

o

oz
ð�qq~uuÞ þ 1

r
o

or
ðr�qq~vvÞ ¼ 0: ð2Þ

Mean axial momentum equation:

�qq~uu
o~uu
oz

þ �qq~vv
o~uu
or

¼�o�pp
oz

� o

oz
�qqgu00u00u00u00
� �

� o

or
�qqgu00v00u00v00
� �

� �qqgu00v00u00v00

r
:

ð3Þ

Mean radial momentum equation:

�qq~uu
o~vv
oz

þ �qq~vv
o~vv
or

¼ � o�pp
or

� o

oz
�qqgu00v00u00v00
� �

� o

or
�qqgv00v00v00v00
� �

: ð4Þ

By adopting the approach taken by Kee et al. [2], Eqs.

(2)–(4) can be reduced to a one-dimensional boundary-

value problem along the centerline. The mean statistics,
such as the mean axial velocity, density and other

quantities, are assumed functions of axial distance. By

introducing two new variables UðzÞ � �qq~uu=2 and

GðzÞ � dUðzÞ=dz, the radial velocity can be deduced

from continuity equation as ~vv ¼ �GðzÞr=�qq. All the

normal stresses are assumed to be functions of z only asgu00u00u00u00 ¼ suuðzÞ, gv00v00v00v00 ¼ svvðzÞ, and gw00w00w00w00 ¼ swwðzÞ. With

these, the axial and radial momentum equations are

reduced to

4U
d

dz
U
�qq

� �
þ o�pp

oz
þ d

dz
ð�qqsuuÞ þ 2�qqsuv ¼ 0; ð5Þ

and

�2U
d

dz
G
�qq

� �
þ G2

�qq
þ H þ d

dz
ð�qqsuvÞ ¼ 0; ð6Þ

where Hð� ð1=rÞðo�pp=orÞÞ serves as an eigenvalue of the

problem. The boundary conditions are: Uð0Þ ¼ q0u0=2
and UðhÞ ¼ q1u1=2. In addition, the axial velocity gra-

dients at the exits need to be specified and will be de-

scribed in a later section.

2.2. Turbulence closure

Three different turbulence models are considered: the

standard ~jj–~�� eddy-viscosity model and two Reynolds

stress models proposed by Launder et al. (denoted by

RSM-LRR) [19] and by Speziale et al. (denoted by

RSM-SSG) [20]. Although the standard ~jj–~�� model is

widely used in modeling of turbulent flows, its applica-

tions to opposed-jet flows have been questioned [22,23].

In opposed-jet flows, turbulence components are highly

anisotropic due to strong compression of turbulence.

This feature is not well treated by the ~jj–~�� model as it

assumes isotropic turbulence. As such, the standard ~jj–~��
model could yield negative values of turbulence kinetic

energy for the radial component [8]. Durbin [24] sug-

gested that the appropriate velocity scale for turbulent

transport near the wall is the fluctuating velocity normal

to the wall, v2 and proposed the j–�–v2 model as an

improvement to the standard ~jj–~�� model for wall-boun-

ded flows. The anisotropy of turbulent transport is in-

troduced in the j–�–v2 model by using v2 as the velocity
scale in eddy-viscosity evaluation. An additional trans-

port equation for v2 is therefore required and is solved

together with the j and � equations. Note that v2 of the
j–�–v2 model is equivalent to the axial component of

turbulent kinetic energy, i.e., fu002u002 , in opposed-jet flows.

Both the Reynolds stress and j–�–v2 models are con-

sidered better suited for the opposed-jet flows as the

anisotropy aspect is included. Because of the simplicity

of the current 1-D model, the higher order Reynolds

stress models are implemented. For two- or three-

dimensional simulations, however, the j–�–v2 model may

be favorable due to its low computing cost. Detailed
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equations for the Reynolds stress closure considered

here are described in Appendix A.

2.3. Scalar field models

With the equal diffusivity assumption, the mixing

field can be described by the mixture fraction as

2U
d~ff
dz

¼ � d

dz
�qqgu00f 00u00f 00
� �

: ð7Þ

Modeling of the turbulent scalar flux, gu00f 00u00f 00 , is needed to

close Eq. (7). Conventionally, the gradient diffusion

model is used with the ~jj–~�� model and it is expressed as

gu00f 00u00f 00 ¼ � mt
rf

d~ff
dz

ð8Þ

with rf ¼ 0:7 [18]. For the Reynolds stress closure, a

transport equation for gu00f 00u00f 00 is solved with modeling

constants taken from [25]

2U
dgu00f 00u00f 00

dz
¼ 2

d

dz
�qqCsf suu

~jj
~��

dgu00f 00u00f 00

dz

 !
þ �qqCsf suv

~jj
~��

dgu00f 00u00f 00

dz

� �qq suu
d~ff
dz

"
þ 2gu00f 00u00f 00 d

dz
U
�qq

� �#

� Cf 1�qq
~��

~jj
gu00f 00u00f 00 þ 2Cf 2�qq gu00f 00u00f 00 d

dz
U
�qq

� �� �
;

ð9Þ

where Csf ¼ 0:35, Cf 1 ¼ 2:15, and Cf 2 ¼ 0:8. The vari-

ance of the mixture fraction, ff 002f 002 , is modeled by [26]

2U
dff 002f 002

dz
¼ d

dz
�qqCff suu

~jj
~��

dff 002f 002

dz

 !
þ �qqCff suv

~jj
~��

dff 002f 002

dz

� 2�qqgu00f 00u00f 00 d
~ff
dz

� �qq~vv: ð10Þ

Modeling of the scalar dissipation rate is often done by

assuming a constant ratio between the scalar mixing

time scale and the turbulence time scale. We use this

model with the ~jj–~�� closure and the scalar dissipation

rate is modeled as

~vv ¼ CD

~��

~jj
ff 002f 002 ; ð11Þ

where CD ¼ 2 [27]. However, this practice is not well

supported by experimental observations. From the he-

ated grid turbulence experiments, Warhaft and Lumley

[28] found the values of CD ranging from 0.6 to 2.4.

Eswaran and Pope [29] performed direct numerical

simulations of decaying scalar fields in stationary, ho-

mogeneous turbulence. The value of CD is found higher

than 2 when the flow residence time is short (less than 2–

3 units of the large-eddy turnover time).

Alternatively, the scalar dissipation rate can be com-

puted by its modeled transport equation (e.g., [25,30]).
We use the model proposed by Jones and Musonge [26]

and solve for the ratio between ~vv and ff 002f 002 for numerical

stability. The modeled ~vv equation is expressed in terms of

nf ð� ~vv=ff 002f 002Þ as

2U
dnf
dz

¼ d

dz
�qqCvsuu

~jj
~��

dnf
dz

 !
þ �qqCvsuv

~jj
~��

dnf
dz

� Cd1�qqn
2
f � Cd2�qqnf

~��

~jj
� Cd3�qqnf

gu00f 00u00f 00ff 002f 002

d~ff
dz

� Cd4�qq
nf
~jj

2suu
d

dz
U
�qq

� ��
� svv

G
�qq

�
ð12Þ

with Cv ¼ 0:35, Cd1 ¼ 2:2, Cd2 ¼ 0:9, Cd3 ¼ 1:0, and

Cd4 ¼ 1:4. The boundary conditions for the mean scalar

field are ~ff ð0Þ ¼ 0 and ~ff ðhÞ ¼ 1. All second moments are

assigned zero at the jet exits.
3. Results and discussion

The effects of various parameters on the computed

characteristics of turbulent opposed-jet flows are ex-

plored by using various turbulence models. Table 1 lists

the flow conditions of opposed-jet flows considered here.

The first six conditions correspond to mixing of air

streams at different temperatures (difference less than 80

�C). The last one is for air–helium mixing. The first four

cases, designated as Cases A through D, correspond to

the experiments by Mastorakos [31]. These cases were

designed to study the influence of bulk velocity and nor-

malized turbulence intensity
�
Cq �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðfu00u00 2þ 2 ev00v00 2Þ=3q

=u0
�

on the flow and mixing fields. Both Case A and Case B

have the same level of exit turbulence intensity but CaseA

has a higher bulk velocity than that of Case B. Cases C

and D have the same bulk velocities as those of Cases A

andB respectively but with a lower level of exit turbulence

intensity.

The next two cases, Cases E and F, correspond to the

experiments studied by Sardi et al. [32]. These two cases

have the same level of exit turbulence intensity but the

bulk velocity of Case F is higher. It is noted that the exit

turbulence intensity of Cases E and F are higher than

those in Cases A–D. The impact of jet density ratio, rq,
on the mixing is explored by Case G. The sensitivity of

numerical solutions to the non-zero axial velocity gra-

dients is examined by repeating Case B with various

boundary conditions.

3.1. Effect of bulk velocity

Experimental results by both Mastorakos [31] and

Sardi et al. [32] concluded that the flow field of opposed

jets can be described by the similarity profiles with the

exit velocity being the velocity scale and the jet spacing



Table 1

Flow conditions of mixing in turbulent opposed-jet flows

Case

A B C D E F G

u0 (cm/s) 313 148 313 148 384 544 148

u1 (cm/s) 343 162 343 162 400 570 395

h (cm) 2.0 2.0 2.0 2.0 3.0 3.0 2.0

Cq 0.085 0.085 0.045 0.045 0.100 0.100 0.085

Lt;0 (cm) 0.40 0.40 0.40 0.40 0.28 0.28 0.40

Ret 70 33 37 17 73 102 33

sf ¼
h
2u0

(ms) 3.2 6.8 3.2 6.8 3.8 2.6 6.8

st ¼
Lt;0fu00u00 (ms) 14.9 32.3 28.6 58.8 7.2 5.1 32.3

sf=st 0.215 0.211 0.112 0.116 0.528 0.510 0.211

q1=q0 0.83 0.83 0.83 0.83 0.92 0.92 0.14

Ref. [4] [4] [4] [4] [32] [32] [–]
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being the length scale. For now, calculations are carried

out with zero axial velocity gradient at jet nozzle exits,

i.e., du=dz ¼ 0. Fig. 2 compares the mean axial velocity

profiles of Cases A and B versus the non-dimensional

axial distance, z�, defined as z� ¼ 2z=h� 1. Both the

experimental data and numerical results confirm that the

normalized mean velocity profiles of Cases A and B are

similar. Some discrepancies are noted between the model

predictions and the data. This will be discussed in the

exploration section of boundary conditions for axial

velocity gradient.

The normalized root mean square (rms) values of the

velocity fluctuations for Cases A and B are compared in

Fig. 3. The experimental data exhibit a gradual increase

of fu00u00 as the flow approaches the stagnation plane. The

peak is located at the stagnation plane and its value is
Fig. 2. Normalized mean axial velocity predicted by various

1-D models showing no dependence on turbulence model or

bulk velocity.

Fig. 3. Comparisons of velocity fluctuation profiles showing

a strong anisotropy. Top: axial component; bottom: radial

component; experimental data: Mastorakos [4].
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about twice of the initial level at the jet exits. Consistent

with previous results from the literature [22,23], the ~jj–~��

model over-predicts the production of fu00u00 leading to a

sharp increase of fu00u00 near the stagnation plane. The re-

sults of Reynolds stress models, denoted by RSM-LRR

and RSM-SSG, agree better with the data than the ~jj–~��
model. The RSM-LRR model under-predicts the fu00u00
values near the jet exits but over-predicts the peak value

by about 50%. The predicted profile of fu00u00 by the RSM-

SSG model is seen closely resembling to the data al-

though the peak fu00u00 value is under-predicted by about

30%. The lower plot shows the radial velocity fluctua-

tion, ev00v00=u0, with its peak value only half of that of fu00u00
revealing that the turbulence is highly anisotropic. The

~jj–~�� model over-predicts the peak value by a factor of 3.
Fig. 4. Comparison of mean mixture fraction profiles showing

no influence of bulk velocity. Experimental data: Mastorakos

[4] (top) and Sardi et al. [32] (bottom).
The RSM-LRR model under-predicts the ev00v00 level in

regions near the cold jet side (from z� ¼ �1 to

z� ¼ �0:2) but gives a peak value within 10% of the

experimental value. The RSM-SSG model predicts a

nearly flat profile. Among the three models, the predic-

tions by the RSM-LRR model show overall the best

agreement with the data.

Fig. 4 compares the mean mixture fraction profiles of

Cases A, B, E and F. The predictions by the ~jj–~�� model

are seen in good agreement with the data. The mixing

layers predicted by the RSM-LRR model are slightly

narrower than the data. The RSM-SSG model yields the

least satisfactory results with a very narrow mixing layer

which is due to the predicted low turbulence as seen in

Fig. 3. Again both the data and model results confirm
Fig. 5. Comparison of mixture fraction fluctuation profiles

showing no influence of bulk velocity. Experimental data:

Mastorakos [4] (top) and Sardi et al. [32] (bottom).
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that the mean mixing field is independent of the bulk

velocity.

The corresponding comparisons of mixture fraction

fluctuation, ff 00f 00 , are given in Fig. 5. Both the predicted

and measured ff 00f 00 profiles peak near the stagnation

plane. Similar to the mean scalar field, the bulk velocity

has negligible effect on the scalar fluctuation. For Cases

A and B, both the ~jj–~�� and Reynolds stress models

predict peak values of ff 00f 00 higher than the data by about

50%. This is in contrast to Cases E and F for which the

differences between data and predictions are within 20%.

Again the results from the RSM-SSG model show a

much narrower mixing layer than the data although the

predicted peak value is reasonable. The normalized ~vv
profiles are compared in Fig. 6 for Cases E and F. Both

the measurement and calculation indicate that the non-

dimensional scalar dissipation rate is independent of the

bulk velocity. The weak influence of bulk velocity on the

scalar fluctuation may be due to the large separation

between the much shorter mean flow residence time sf
and the eddy turnover time st (see Table 1). In com-

parison with the data, all three turbulence models over-

predict ~vv by a large amount. These large discrepancies

are indicative of the large uncertainties in both the

measurement and the models; hence, further studies are

warranted.

3.2. Effect of initial turbulence intensity

The computed mean axial velocity profiles by all the

models reveal no dependence on exit turbulence intensity

consistent with the experimental observation. As ex-

pected, Case B (the high turbulence case) has a higher

level offu00u00 than that of Case D (the low turbulence case).
Fig. 6. Normalized scalar dissipation rate profiles predicted by

various turbulence models showing no influence of bulk ve-

locity. Experimental data: Sardi et al. [32].
The numerical results obtained with the ~jj–~�� model and

the RSM-LRRmodel give trends qualitatively consistent

with the data (not shown). Comparisons of mixing field

are presented in Fig. 7. Only the results of RSM-LRR

model are shown for brevity. Both the measurement and

the numerical results indicate that the mixing layer

thickness increases with the initial turbulence intensity.

The lower plot shows the profiles offf 00f 00 and its peak value

is found to increase with exit turbulence intensity. The

experimentally observed effects of Cq on both the peak ~ff 00

value and the mixing layer thickness are reasonably

captured by the RSM-LRR model. The ~jj–~�� model (not

shown) predicts the proper trend of mixing layer thick-

ness but shows no influence of Cq on the peak ~ff 00 value.
Fig. 7. Comparison of mixing field between data and predic-

tions by LRR Reynolds stress model showing the influence of

jet exit turbulence intensity. Top: mean mixture fraction; bot-

tom: mixture fraction fluctuation; experimental data: Masto-

rakos [4].
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3.3. Effect of density ratio

Both experimental and numerical results show that

the mixing field of turbulent opposed-jet flows with a

small density difference (rq � q1=q0 � 1) exhibits some

common features. The mean axial velocity and the mean

mixture fraction vary monotonically across the mixing

layer and their profiles are nearly anti-symmetric with

respect to the stagnation plane (z� ¼ 0). The velocity and

scalar fluctuations are symmetric with respect to the

stagnation plane where the fluctuations peak. To explore

the effect of density variation on the mixing character-

istics, Case G is conducted with a large density ratio i.e.,
Fig. 8. Predicted velocity field of air–helium mixing by the ~jj–~�� model

velocity fluctuation. Air side: z� ¼ �1; helium side: z� ¼ 1. Case B is
rq ¼ 0:14. With Case B as a reference, Case G has the

same cold (air) flow conditions as Case B but the hot air

stream in Case B is replaced by a helium stream. The

bulk velocity of the helium jet is increased accordingly so

that both jets have the same momentum.

The predicted mean axial velocity and its fluctuation

by the ~jj–~�� and the RSM-LRR models are presented in

Fig. 8. As seen in the figure, the predicted mean velocity

profiles of Case G differ significantly from that of Case

B. The mean axial velocity profiles of Case G are no

longer anti-symmetric with respect to the stagnation

plane. Consequently, the predictedfu00u00 profiles of Case G
become asymmetric with respect to z� ¼ 0. Due to the
and RSM-LRR model. Top: mean axial velocity; bottom: axial

provided as a reference.



Fig. 9. Scalar mixing field of air–helium opposed jet predicted

by the ~jj–~�� model and RSM-LRR model. Top: mean mixture

fraction; bottom: mixture fraction fluctuation.

Fig. 10. Influence of non-zero axial velocity gradient boundary

condition on predictions of mean axial velocity.
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difference in the mean velocity gradient, the turbulence

production on the heavy-fluid side of the stagnation

plane is smaller than that on the light-fluid side. Al-

though the velocity field is quite different, the mean

mixture fraction profile of Case G, given in Fig. 9, re-

mains similar to cases with rq � 1 except that it is shifted

towards the light-fluid side. Accordingly, the predictedff 00f 00 profiles shown in the lower plot also shift to the light-

fluid side. Compared to Case B, the mixing layer of Case

G is slightly narrower and the peak ff 00f 00 value is about

20% lower than that of Case B.

3.4. Effect of non-zero axial velocity gradient

As noted earlier, the computed mean axial velocity

with the zero gradient boundary condition deviates from
the measurements. It is plausible that the assumption of

zero axial gradient at the nozzle exit is invalid due to the

influence of an opposing jet. To assess the impact of

non-zero velocity gradients on the computed results, an

exploration run with conditions of Case B is repeated

using the RSM-LRR model and non-zero axial velocity

boundary conditions. The boundary values of the axial

velocity and its gradient at the hot air jet exit are ad-

justed to match the measured axial velocities in regions

near the jet nozzle exits. The velocity boundary condi-

tions at the cold-air side are determined by the equal-

momentum relation ~uu0;act ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
�qq1=�qq0

p
~uu1;act and by the

mass conservation of the cold jet r2~uu0 ¼ r2~uu0;act þ 2r~vv0;act,
where the subscript act denotes the �actual’ value in

distinction from the zero gradient value. These two re-

lations lead to the specification of exit radial velocity as

~vv0;act ¼ �r
d~uu
dz

 !
0;act

¼ r
2

~uu0
�

� ~uu0;act
�
: ð13Þ

Based on this equation, the axial velocity gradients at

both jet exits are negative and their absolute values are

about 40% of the mean strain rate, i.e., d~uu=dz ’ �0:4Sb.
The numerical results for the velocity and mixture

fraction fields are presented in Figs. 10–12. As seen in

Figs. 10 and 12, the agreements between the predicted

mean values denoted by du=dz 6¼ 0 and the experimental

data are greatly improved. The corresponding predic-

tions offu00u00 , ev00v00 (Fig. 11) andff 00f 00 (Fig. 12) also agree better

with the data than those obtained with du=dz ¼ 0, es-

pecially near the boundaries. This exercise demonstrates

the importance of proper boundary conditions for the

velocity gradient at jet exits. The accuracy of numerical

predictions will be much improved if experiments provide



Fig. 11. Influence of non-zero axial velocity gradient boundary

condition on predictions of axial (top) and radial (bottom)

velocity fluctuations.

Fig. 12. Influence of non-zero axial velocity gradient boundary

condition on predictions of mean mixture fraction (top) and

mixture fraction fluctuations (bottom).

1032 C.-P. Chou et al. / International Journal of Heat and Mass Transfer 47 (2004) 1023–1035
data on radial velocity near the jet exits. Because of the

short flow residence time, the uncertainty in axial ve-

locity gradient at the exits will not strongly affect the

turbulence fields near the stagnation plan as indicated in

Figs. 11 and 12. Thus the uncertainty in the boundary

conditions will not alter the conclusion that the standard

~jj–~�� model over-predicts the turbulent kinetic energy

production as many other researchers observed in vari-

ous types of stagnating flows [22,23].

3.5. Mechanical-to-scalar time scale ratio

With the results from the RSM-LRR model, the CD

distributions for five different cases are deduced and

plotted in Fig. 13. Outside the mixing layer CD is zero

and its value rises sharply near the edges of the mixing
layer. At the stagnation plane, CD reaches its peak value.

For cases with small density differences, the computed

CD profiles are found to depend on both the initial

turbulence intensity and the ratio of the flow residence

time to the large-eddy turnover time (sf=st). The CD level

is found to be high when the value of either Cq or sf=st is
low. As listed in Table 1, Case D has the lowest values

for both Cq and sf=st among the four cases (A, B, D, E).

The corresponding CD value is the highest among the

cases. Since both Case A and Case B have identical CD

profiles, the bulk velocity has no effect on the computed

CD level. Because of the relatively �young’ turbulence

(small sf=st), the CD levels of Cases A, B and D are

greater than 3. The peak CD value of Case G is seen

comparable with those of Cases A and B. However, the

CD level of Case G is low on the heavy-fluid side of



Fig. 13. Distributions of mechanical-to-scalar time scale ratio

predicted by the second-order scalar (RSM-LRR) model for

constant density mixing Cases A, B, D, and E as well as variable

density mixing Case G listed in Table 1.
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mixing layer. In the lower plot, the effect of density

variation on CD is plotted versus mixture fraction

showing a larger variation when the density difference

increases. Therefore, the practice of assigning a constant

value for CD is questionable for modeling flows with

large density changes.
4. Conclusion

A study of turbulent opposed-jet flows using 1-D

formulation with both the ~jj–~�� and Reynolds stress

models is reported with extensive comparisons with ex-

perimental data. Both data and numerical results using
Reynolds stress models show that the turbulence is

highly anisotropic. Among the three turbulence models

studied, the combination of the RSM-LRR model and

the second-order scalar model gives the most satisfactory

predictions. The numerical model confirms that both the

velocity and the scalar fields are not affected by the bulk

velocity in accord with the experimental observation.

Model predictions of the influence of jet exit turbulence

intensity on the velocity and scalar field are found sat-

isfactory. Model results reveals that the jet density ratio

has strong influence on the characteristics of both the

velocity and scalar fields. An exploration study demon-

strates that the importance of proper specification of

axial velocity gradient. The time scale ratio between the

turbulence and the scalar fields is deduced from com-

puted results. Its value is found nearly constant inside the

mixing layer ranging from 2.5 to 3.0. Density variation is

shown to affect the time scale ratio noticeably implying

that using a fixed value may be inadequate for opposed-

jet flows with large density variations.
Appendix A. Reynolds stress closure

Two versions of Reynolds stress closure are consid-

ered: one was proposed by Launder et al. (RSM-LRR)

[19] and the other by Speziale et al. (RSM-SSG) [20].

The major difference between these two models lies in

the modeling of the pressure–strain correlations. In

RSM-LRR, the coefficients of the rapid part of the

pressure–strain correlation are linear functions of the

anisotropy tensor while the coefficients in RSM-SSG are

quadratically non-linear. The transport equations ofgu00u00u00u00 , gv00v00v00v00 , and gu00v00u00v00=r are listed in sequence

2U
dsuu
dz

¼ d

dz
�qqCssuu

~jj
~��

dsuu
dz

 !
þ �qqCssuv

~jj
~��

dsuu
dz

þ �qqbPPuu

þ �qqpuu �
2

3
�qq~��; ðA:1Þ

2U
dsvv
dz

¼ d

dz
�qqCssuu

~jj
~��

dsvv
dz

 !
þ �qqCssuv

~jj
~��

dsvv
dz

þ �qqbPPvv

þ �qqpvv �
2

3
�qq~��; ðA:2Þ

2U
dsuv
dz

� Gsuv ¼
d

dz
�qqCs

~jj
~��

suu
dsuv
dz

�"
þ s2uv

�#

þ 2�qqCssuv
~jj
~��

dsuv
dz

þ �qq
bPPuv

r
þ �qq

puv

r
:

ðA:3Þ

The turbulence production is evaluated by the individual

Reynolds stress component as
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bPPuu ¼ �4suu
d

dz
U
�qq

� �
; bPPvv ¼ 2svv

G
�qq
;

bPPuv

r
¼ suu

d

dz
G
�qq

� �
þ suv

�
� 2

d

dz
U
�qq

� �
þ G

�qq

�
:

The pressure–strain correlations, i.e., puu, pvv, and puv,

are given in [7]. By including the anisotropic effects, the ~��
equation for the RSM becomes

2U
d~��

dz
¼ d

dz
�qqCs�suu

~jj
~��

d~��

dz

 !
þ �qqCs�suv

~jj
~��

d~��

dz

þ C�1�qq
~��

~jj
bPP � C�2�qq

~��2

~jj
; ðA:4Þ

where Cs� ¼ 0:15, C�1 ¼ 1:44, C�2 ¼ 1:92 for RSM-LRR

and Cs� ¼ 0:15, C�1 ¼ 1:44, C�2 ¼ 1:83 for RSM-SSG.

Boundary values of the Reynolds stress components are

estimated by assuming isotropic turbulence at the jet

exits as suuð0Þ ¼ svvð0Þ ¼ swwð0Þ ¼ 2~jjð0Þ=3, suuðhÞ ¼
svvðhÞ ¼ swwðhÞ ¼ 2~jjðhÞ=3, and suvð0Þ ¼ suvðhÞ ¼ 0.
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